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Abstract. The derivation is discussed of a novel generalisation of the Ising model which 
allows us to formally include an arbitrary (positive) value for the spin. This extends the 
domain in which such questions as the spin independence of critical indices can be 
considered. This is relevant to universality. The immediate extension of the formalism to 
cover the case of mixed-spin Ising systems is made. Certain consequences of the new 
model are also explored. 

1. Introduction 

The standard spin S (where S is one of the usual integral or odd-half integral values) 
Ising model has, in the usual notation, the partition function 

N 

Z N = t r ,  . . .  t rNexp K C S : S , ? + L C  

where K = p J / S 2 ,  L = p m H / S  and Tr = tr, . . . tr, . . 
partial trace tr, in (1.1) is defined by the condition 

( (Y) ! = I  

tr, d ( S : )  = (2S+1)- '  C d ( S ; )  
s ;€Y 

in which the observable d is any suitable function 

Y={-s,  - S + l , . . . ,  S- l ,S} .  

si) 
trN stands for the total trace. The 
that 

(1.2) 

of ST and Y is the set 

(1.3) 

The factor (2S+ 1)-' is introduced in (1.2) so that t r , l  = 1, which is a convenient 
normalising condition. the connection with thermodynamics is provided via the 
Helmholtz free energy FN : 

-pFN =In ZN. (1.4) 
Equations (1.1)-( 1.4) allow various properties of the Ising model to be calculated 

as explicit functions of S. As a first example of this, we note that the leading coefficients 
in certain exact high-temperature series expansions (in powers of K ,  of course) have 
been obtained explicitly as functions of S. Table 1 makes this clear by quoting some 
results from Domb and Sykes (1957) and Yousif and Bowers (1984) for the reduced 
zero-field susceptibility coefficients of the FCC and BCC lattices (the results of the latter 
are, in fact, for a mixed-spin Ising model). As a second example of explicit results 
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Table 1. Reduced zero-field susceptibility coefficients of the single-spin FCC and the 
mixed-spin (of magnitudes f and S )  BCC lattices. Here x = S(S+  1). 

FCC 

ao= 1 
a ,  = 2x 
a, = (x/30)(1 14x2+ 114x -3 )  
a3 = (x/300)(2124x4+4248x3+ 1 9 8 8 ~ ~ -  136x+ 1) 
a4 = (x/453 600)(5909 832x6+ 17 729 496x5+ 17 092 548x4 

+ 4 6 3 5 9 3 6 ~ ~ - 6 1 6 0 5 0 ~ ~ + 2 0 8 9 8 ~ -  135) 

BCC 
~ ~~ 

bo = (1/11)(4x+ 3) 
b,=(16x/11) 
b,= (2x/165)(148x+99) 
b3= ( 2 ~ / 1 6 5 ) ( 5 1 6 ~ - 2 2 )  
b4= (~ /6930) (52  148x2+31 159~-1305)  
b, = ( x i  1155)(29 0 1 8 ~ ’  - 2 7 7 5 ~  +92) 
b6= ( ~ / 4 1 5  800)(12482 576x3+6589456x2-645 1 9 9 ~ + 1 9 9 7 1 )  
b, = ( ~ / 2 0 7  900)(20 370 104x3-3075 616x2+202 3 2 9 ~  -5871) 

involving S, we turn to the mean-field approximation. Here the complete thermo- 
dynamics may be shown to follow (Smart 1966) from the partition function 

sinh[( S + + ) H e ]  
sinh(fH,) 

Z N  = Z N  z = (2S+  l)-I 

where He is an effective field. Similar results apply in other approximation schemes. 
As a third example of our theme, we refer to the Kac-Hubbard-Stratonovich (KHS)  

transformation (Berlin and Kac 1952, Stratonovich 1957, Hubbard 1959) used by 
Hubbard (1972). This allows ( 1 . 1 )  to be re-expanded in the zero-field form: 

Here L = 0 and K is now a matrix, the couplings K, between spins i and j generalising 
the previous couplings K. The explicit spin dependence is given by the formula 

sinh[(S +i)xl]  
sinh($x,) ’ 

R,(x,) = ( 2 S +  I ) - l  

The importance of (1.6) and (1.7) is that for any spin S = f , 1 ,  i, . . . , they cast the 
Ising model in a form suitable for the application of Wilson’s (1971) field theoretical 
techniques (see Hubbard 1972). 

The first and third examples (and, to a lesser extent, the second) indicate methods 
by which studies have been made of the variation with spin of critical point parameters 
of the Ising model. Such studies have provided strong evidence in favour of that aspect 
of the universality referred to as spin independence of critical exponents. An intriguing 
point follows from the fact that the above results involve explicit algebraic functions 
of S. This means that, in an ad hoc manner at least, the study of spin independence 
need not be restricted to S = 4, 1,  t ,  . . . ; any real value of S may be considered (for 
simplicity we leave aside the possibility of complex values here). To give an example, 



Ising model with real spin 3317 

if we put S = -3.1, 42, 7~ (say) respectively in the series for susceptibility x o ( K )  of 
BCC lattice as given by table 1, and then form Pad6 approximants to ( d / d K )  In x o ( K ) ,  
we find the estimates of table 2 for the critical exponent y ( x o ( K )  of FCC yields very 
short Pad6 tables and are therefore not included). These suggest a value of y near 
1.25 just as for the usual ‘quantum’ spin values (for estimates using such values see 
Yousif and Bowers (1984)). Another example follows if we put the same ‘unphysical’ 
values in (1.6) and (1.7). The argument of Hubbard based on applying Wilson’s ideas 
to (1.6) and (1.7) suggests that the fixed point is unchanged in going even to these 
values of the spin. This supports the idea that the spin independence of critical indices 
may be extended to real S. 

Table 2. Estimates for y provided by forming [N,  D] PA to the series ( d / d K )  In , y o ( K ) ,  
on the mixed-spin (of magnitudes 4 and S )  BCC lattice. S takes the values-3.1, J 2 ,  n=. 

(S = -3.1) 
2 1.5100 1.0071 1.3254 - - 
3 1.1263 1.2251 1.2611 1.4434 
4 1.2843 1.2695 1.2243 
5 1.2684 1.2842 
6 -  

( S = J 2 )  
2 1.3901 1.0425 1.3154 - - 
3 1.1134 1.2184 1.2502 1.4377 
4 1.3282 1.2545 1.2175 
5 1.2305 1.3245 
6 -  

(S=n=) 
2 1.5895 1.0403 1.2892 - - 
3 1.1686 1.2350 1.2781 1.3755 
4 1.2547 1.3069 1.2342 
5 1.2892 1.2542 
6 -  

The above is, as previously observed, ad hoc: it uses formalism (1.1)-(1.3) which 
is only valid when S = $, 1, 5 ,  . . . , and then quite arbitrarily treats resulting formulae 
as if they apply when S =  7~ or any other real number. The purpose of this paper is 
to legitimise this. We restrict our attention to the case where S takes positive values. 
The idea is to generalise (1.2) and (1.3) in such a way that the resulting model applies 
for any positive S and gives the same results, at least in our examples, for explicit spin 
dependence as the previous ad hoc procedure. In this way we define an Ising model 
for any positive-spin S and so extend the domain in which such questions as universality 
can be considered. 

2. Definition of the model 

Moments of powers of the spin components S: are simply tr, (Sf)‘, r = 0, 1, 2, . . . , in 
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Ising model. These are given (on using equations (2.7)) by 

where Br(x) denotes the Bernoulli polynomial of degree r. 
As is known from the theory of probability distributions, a knowledge of the full 

set of such moments is completely equivalent to the distribution function of spin 
components. With respect to discussion of § 1,  it is therefore sufficient to generalise 
equations (1.2) and (1.3) such that (2.1) is formally valid for any S E R + .  This will 
then determine the spin distribution function uniquely, defining the generalised model 
via ( 1 . 1 ) .  We shall start by defining the new trace tr: and subsequently examine whether 
the requirements mentioned at the end of § 1 for a successful candidate are met. We 
write, for all SaO, 

lX 

( 2 S +  1 )  t r :d(S;)  = c d ( S : ) +  { W s - L s l ( u ) d ( u )  du (2.2) 
S , € Y  -1- 

where [SI is the greatest integer G S ,  and the distribution function Ws-rsl(u) is given 
in terms of the quantity 0 s S - [SI < 1 by 

i s i n 2 r ( S - [ S ] )  
cos 2TU -cos 2 r ( S - [ S ] ) '  Ws-[s , (u )  = 

Here Y" is the set 

Y = { - S , - S + l ,  . . . )  -S+[S],S-[SI , . . . ,  S - l , S } .  (2.4) 

(2S-C l)tri(Sf)r = (Sf)'+ W s - r s l ( ~ ) ~ r  du. (2.5) 

The generalised moments tr :(Sf)r  are thus defined from 
lX 

S f E Y  L 
We must now prove that (2.5) indeed yields the same explicit spin dependence as 

in (2.1) for arbitrary positive S. First, consider the situation for non-integer spins 
where 0 < S - [SI < 1. We have (Erdelyi et a1 1953); for r = 2n = 0 , 2 , 4 ,  , . . : 

which holds for 0 < S -[SI < 1 .  The summation in (2.5) may be calculated via relations 
(Erdelyi et a1 1953) 

where r = 0, 1 ,  2, . . . . Whence for 0 < S - [ SI < 1 ,  i.e. for non-integers, 



Ising model with real spin 3319 

Thus (2.8), together with (2.6), yield via (2.5) 

2 
2 n + l  tr:(S:)'" = ( 2 S +  I ) - '  - &+, (S+ 1 )  (2.9) 

which holds for every non-integer spin and checks with (2.1) if, in it, S is literally 
taken to belong to non-integer 52'. When r = 2n + 1 is odd, the integral and summation 
in (2.5) are easily seen to vanish, implying zero moment for odd powers of Sf, consistent 
with (2.1). We remark the interesting case of 'physical' spins S = t ,  5,. . . (where 
S - [SI = $, a particular case of 0 < S - [SI < 1 )  for which the integral in (2.2) vanishes 
and Y' coincides with 9, so that t r i= t r z  and  thus (1.2) and (1.3) are recovered for 
s = L  1 

Next we consider the case of integer spins where S - [ SI = 0. It is seen that the 
value S-[S]=O is counted twice in 9' as given by (2.4). This will obviously affect 
the summation in (2.5) only when r = 0 .  Also the weight function W,(u) is now 
everywhere zero except at the origin U = 0. To work out the integral part of the moments 
in (2.5) we expand informally in a small neighbourhood of the origin to get 

2 9 2 ,  . . .  . 

lX I_,, wO(u)ur du  

= lim I' -1 ( i t ) ' d t  
S-[SI-O --E 5T t2+(S-[S])' 

r = O  
r = 1 , 2 , 3 , .  . .' 0 

(2.10) 

This is because ( S  - [SI)/[ t' + ( S  - [SI)'] 5~ is a delta sequence (see, for example, 
Gel'fand and Shilov 1964). Thus the problem with tr: 1 in (2.5), i.e. when r = 0 ,  is 
automatically taken care of by the delta function behaviour of WO( U )  to yield tri 1 = 1 ,  
as before. Equations (2.5) and (2.10) then imply 

r m L 
( 2 S +  l ) - l -  B*n+,(S+ 1 )  r = 2 n  

tr:(S:)r = 2 n + l  
r = 2 n + l  

for any positive integer S, which again checks with (2.1). 
In this manner, we have defined a new model with the partition function 

(2.11) 

(2.12) 

where tr: are given by (2.2)-(2.4). As we set out to achieve, it is a generalisation of 
the standard Ising model which reduces to it (in that its moments are identical to those 
of the standard model) when S = $, 1, 1 , .  . . , and remain consistent for any other 
positive-spin value. Everything derived from this partition function is now formally 
valid for any S E  R+. 

The extension of the above formalism to include mixed-spin Ising systems is 
immediate. Let our loose-packed lattice consist of two (non-equivalent) sublattices A 
and B containing spins SA and S,. Then the partition function is 

S:ASJL.B + LA 1 S:A+ LE Sf,B 
i e A  I E B  
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where K = /3J/SASB, LA = / 3 m A H A / S A  and LB = / 3 m B H B / S B .  Here the total trace is 

Tr=  (trI,A * . . trNA,A)(frI,B . . . trNg,B) 

where NA and N E  represent the number of sites on A and B sublattices respectively and 

Equation (2.1) clearly holds: 

r = 2 n  2 
(2SA-b I)-' - Bh+l(SAf 1) fri,A(S:A) = 2 n + l  

10 r = 2 n + 1  

and 

( 2 . 1 3 ~ )  

(2.13 b )  

We can thus proceed in exactly the same manner as before by writing down (2.2) 
for tr;A d(S;,,) and tr;, ~d(s7,~) with (2.3) and (2.4) defined in terms of SA and S E ,  
respectively. Clearly the mathematics is identical to the single-spin case and we end 
up with the result that equations (2.13a, b )  become formally valid for any SA, S, ER+. 
So the partition function with Tr replaced by Tr' defines the required generalisation 
for mixed-spin Ising models. 

3. Some consequences 

Considering the example of high-temperature expansions, MFT and K H S  transforma- 
tions (as used by Hubbard), we show that our generalised model does indeed yield 
the same results for explicit spin dependence as discussed in 0 1. (The extension of 
the following analysis to the mixed-spin Ising model is trivial). 

( i)  High-temperature expansions. Writing the partition function (1.1) in the form 

enables one to apply the method of Brout (1959, 1960) for obtaining high-temperature 
series expansions in the following manner. Expand the above exponentials in powers 
of K and L. When the first product term is multiplied out, the coefficient of K '  gives 
a contribution from every possible multiply-bonded graph of 1 lines; every such graph 
is associated with an appropriate product of the Sf, S;, . . . , S i ,  there being SfSjL for 
each bond. These must now be multiplied by the expansion of the second product term, 
whose typical coefficient is again an appropriate product of the Sf. Finally, take the 
trace to get factors like tri (Sf) ' ,  r = 0, 1, 2 , .  . . , which must be calculated at vertex i. 
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These then determine the coefficients of K' in the final (exact up to a given order) 
expansion. In our generalised model we clearly end up with factors tri(Sf)' which, 
as proved in the last section, yield the same explicit spin dependence. As a consequence 
the high-temperature series expansion obtained from the new model are identical to 
those of the standard Ising system, with the advantage that they are formally valid for 
all S E R+. The smoothness of estimates of table 2 now looks plausible in view of an 
extended form for the spin independence of critical exponents. 

(ii) MFT. The standard spin-S Ising Hamiltonian 

can be written as a sum of the site-spin Hamiltonian Xi in the following manner: 
N x = c  X# 

i = l  

where 

( 3 . 2 a )  

( 3 . 2 b )  

q being the coordination number of the lattice. The basic assumption of MFT is that 
the spin-spin interactions are approximately equivalent to the effect of an applied 
magnetic field proportional to their mean value (SJ). We thus let 

2 Sf=q(S') 
j = 1  

with (SJ) = (S ' ) ,  V j .  Hence ( 3 . 2 b )  yields 

Z, = tr, exp( H e s f )  V i  ( 3 . 3 )  

for the partition function of the site-spin i, where the effective field He is given by 

He= L + K q ( S ' ) .  

The total partition function is obviously 2, = Zy. 
For our generalised model (3 .3)  becomes 

Z, = trj exp( H,Sf) Z,=ZT" ( 3 . 4 )  
01 

icc 

( 2 S +  l)Zi = exp( Hesf) + Ws-rsl( U )  exp( H,u) du. ( 3 . 5 )  
S i  E 9' 

Here the integeral contribution is equal to (for O <  S - [ S ] <  1) 

sin 2 7 r ( S - [ S ] )  exp(-iH,r) 
I =  j-,- cosh 2 7 ~ t  -cos 2 p ( S -  [SI) 

m 

di 

which is just the inverse Fourier transform of 

sin 27r(S - [SI) 
- (27r)"2 cosh2~t-cos27r(S-[S])  
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where 

F ( l ) = i  J f ( x )  exp(itx) dx 
( 2 7 r ) ” 2  

define the Fourier transform F ( f )  of f ( x )  and its inverse, respectively. Thus I is found 
from tables (see, for instance, Gradshteyn and Ryzhik (1980)) to be 

sinh[(S-[SI -+)He] 
sinh(;H,) 

I =  (3.6) 

for O <  S-[SI < 1. Now equation (2.4) implies for non-integer S 

sinh[(S+;)H,] -sinh[(S-[SI - $ ) H e ]  2 exp(H,Sf)= 
S : € Y  sinh(;H,) 

This, together with (3.6), yields the same form as (1.5) on using (3.5). For integers 
(S -[SI = 0) the integral contribution becomes -1, because of the delta function 
behaviour of WO( U )  and this again takes care of the fact that S - [SI = 0 is included 
twice in Y’, so that once again we obtain 

sinh[(S+;)H,] 
sinh(fHe) 

trj exp( H,S:) = ( 2 S +  1 ) - ’  

for integer spins. Thus the new model gives the equivalent of (1.3, valid formally for 
any positive spin. 

(iii) KHS transformation. In zero field, equation ( 1 . 1 )  reduces to 

ZN = Tr exp 2 Sf K,SJ (3.7) 

where the couplings have been generalised as described in 8 1. The K H S  transformation 
is, for any symmetric positive-definite matrix (this is necessary for the convergence of 
the multiple integral; there exist other transformations, however, which hold true for 
any symmetric matrix (see Baker 1962) so that Hubbard’s arguments will not be affected 
in principle), 

exp S: K,S; 

1J 

4J 

X X 1 - - I . . . J exp( -$ ( K  -‘),,xlxJ + xls:) dNx,. [ ( 7 r / 2 I N  det(K)]”* --T -z 1J I = I  

(3.8) 

Taking the trace as instructed by (3.7) yields equation (1.6) with n,(x,)  = tr, exp(x,S:). 
This in turn gives (1.7) after simple manipulations. These partial traces involved in 
fits are similar to those which come in the MFT (see (ii) above), justifying the resemblence 
between (1.5) and (1.7). In the generalised zero-field Ising model everything remains 
as before, except that 

n,(x,)  = tr: exp(x,S:). 
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From arguments given in (ii), this equation (whose right-hand side is identical to (3.4) 
with He replaced by xi) also yields 

sinh[(S+$)x,] n,(x,) = ( 2 S +  I ) - ]  

for any S E  R+ and is consistent 
becomes formally valid for any 
independence of critical indices 

sinh(ix,) 

with (1.7). The reasoning of Hubbard (see 0 1) thus 
positive real spin, supporting the idea that the spin 
may be extended to positive real S. 
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